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Introduction 

Objectives: The purpose of this research is to maximize the 

dissipation kinetic energy of the internal flow. 

 

 

 

 

 

 

The objective function is evaluated after certain of time in 

steady state condition, the objective function and constraints 

are given by: 

 

 

 

 

 

 

 

 

 

where, J represents the objective function at the steady state, 

the equation of is the weak form of Boltzmann equation, V is 

volume constraint, which is permissible to maximal volume of 

the fluid domain. 

Governing equations: The velocity discretization in time and 

space set along ith lattice direction of the Boltzmann equation, 

with the Bhatnagar-Gross-Krook (BGK) approximation is 

acknowledged, the governing equation of flow field is 

 

 

 

The above equation includes the two processes, propagation or 

streaming process placed in the left hand side, and the other is 

collision process placed in the other side. The equilibrium is 

given by: 

 

 

By tackling the Maxwell-Boltzmann equation by the Taylor 

series expansion with respect to space and time, the discrete 

lattice Boltzmann equation is expressed as follows : 

 

 

The local equilibrium distribution function is given by the 

following formula utilizing the Taylor expansion up to second 

order accuracy 

 

 

Furthermore, the macroscopic fluid velocity and density  are 

obtained from mass and momentum laws in lattice scheme and 

pressure  represents as the follows: 

 

 

 

Finally, the prescribed velocity and pressure boundary 

conditions are applied to all nodes on the left-inlet and right-

outlet boundaries, while the no-slip boundary condition is 

considered on  solid boundaries invariably. 

Methodology 

Level Set Method: The numerical 

technique for tracking interfaces and 

shapes. It can be formulated using a fixed 

design domain D, which consists of a 

solid domain Ω, structural boundaries ∂Ω 

and a void domain D\Ω. The Level Set 

Method makes it very easy to follow 

shapes that change topology, for example: 

• Shape splits in two. 

• Develops holes. 

• The reverse of previous operations. 

This work presents numerical results of topology optimization problem using lattice Boltzmann method 

(LBM) 2D9V model and level set method (LSM) to express the distribution of material itself. Based on 

previous researches, the governing algorithms are constructed which is concerned with finding optimal 

geometry of fluidic devices. Specifically, with the employment of the no-slip condition, prescribed velocity 

and prescribed pressure boundary to solve a problem of maximizing the kinetic dissipation energy, the 

proposed method is validated to be able to work with different constraints and conditions. In this study, the 

validation of variable velocity inlet varying the related flow rate crossing the design domain is granted. To 

be more specific, the inlet constraint employs sinusoidal velocity equation as inlet condition. In other 

words, the velocity inlet plays an important role in the optimal topology resulting to particular cavities. In 

this research, we first build up a methodology with Boltzmann equation (BE) and lattice Boltzmann 

equation (LBE) are presented as the fluid solver, then an optimization based on level set method and 

optimization algorithm are carried out correspondingly. Likewise, the numerical implementation is 

performed to valid the proposed method for fluid problems with different constraints and different 

conditions. More specifically, the numerical example is done with the topology optimization concerned the 

effect of velocity inlet boundary limited in unsteady incompressible flow conditions. Finally, the judgment 

of the effect of velocity inlet condition on topology optimization proceeding is delineated visually though 

the numerical results. This study is not only requires a solution to flow problem for given velocity 

boundary condition but also a prediction on how the initial design affects the flow. 

Results 

Figure 1. 2D9V lattice Boltzmann model 
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Table 1.  Lattice velocities and weight 

parameters in each direction 

Lattice 

direction  

Lattice 

velocity  

Weight 

parameter 

1 (0,0) 4/9 

2 (1,0) 1/9 

3 (0,1) 1/9 

4 (-1,0) 1/9 

5 (0,-1) 1/9 

6 (1,1) 1/36 

7 (-1,1) 1/36 

8 (-1,-1) 1/36 

9 (1,-1) 1/36 
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Table 2. Initial conditions of numerical example 

Parameters 

Lattice points 32x32 Reynolds number 

0.6 Relaxation time 

3.0 Kinematic viscosity 

Velocity 

max 0/V V

out

inVel

Re 3

0 ( )inVel U Sin t

11 10  

0.8 

2

0 1 10U  
0U

Figure 2. Optimization proceeding. 

Figure 4. Velocity and density evolution. Figure 3. Objective value and volume const. evolution. 
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